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Abstract
We present an expression for the solution to the initial value problem for the
ultradiscrete periodic Toda equation. The expression provides explicit forms of
all dependent variables of the equation, while the previously known solutions
give only half of the dependent variables while the others have to be determined
implicitly using the conserved quantities.

PACS numbers: 04.20.Ex, 02.30.lk, 05.45.Yv

1. Introduction

The ultradiscrete periodic Toda equation (udp Toda equation) is obtained from the discrete Toda
equation [1]—which is a well-known integrable partial difference equation—by imposing a
periodic boundary condition and applying a limiting procedure called ultradiscretization [2, 3].
Through ultradiscretization we can construct piecewise linear equations or cellular automata
from continuous equations. The udp Toda equation describes a time evolution of a periodic
box–ball system (PBBS), which is a dynamical system of balls in a one-dimensional array of
boxes with a periodic boundary condition [4, 5].

Recently, using the soliton solution of the ultradiscrete KdV equation, we obtained the
solution to the initial value problem (IVP) for the PBBS and ultradiscrete Toda molecule
equation [6]. In this paper, using the ideas in [6], we derive an expression for the solution to
the IVP for the udp Toda equation. We note that the same problem was also studied in [4] and
[5]; the authors considered the inverse ultradiscretization and solved the initial value problem
of the discrete Toda equation, using the linearization of the dynamics on a Jacobian variety
associated with a hyperelliptic curve determined by the corresponding spectral problem. In
that method, however, only half of the dependent variables are determined in the form of
ultradiscrete theta functions and the others have to be determined by solving rather difficult
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algebraic equations determined by the conserved quantities, which is almost impossible in
practice. In comparison, our method will give all dependent variables in explicit forms.

2. Statement of the result

Let N be a positive integer. The periodic discrete Toda equation is a system of equations

I t+1
m = I t

m + V t
m − V t+1

m+1, V t+1
m = I t

m−1V
t
m

I t+1
m

,

where m = 1, 2, . . . , N , and t ∈ Z, with the boundary condition

I t
m+N = I t

m, V t
m+N = V t

m.

The variables I t
m and V t

m are real valued. Suppose that the system has a one-parameter family
of real positive solutions

{
I t
m(ε), V t

m(ε)
}

ε>0 that satisfies

0 � lim
ε→+0

N∏
m=1

V t
m(ε)

I t
m(ε)

< 1,

and moreover that the limits

Qt
m := lim

ε→+0
−ε log I t

m(ε), Et
m := lim

ε→+0
−ε log V t

m(ε)

exist. Then the new variables satisfy the following set of equations [4, 5], called the udp Toda
equation:

Qt+1
m = min

{
Et

m,Xt
m + Qt

m

}
, (1)

Et+1
m = Qt

m−1 + Et
m − Qt+1

m , (2)

Xt
m = max

{
0, max

1�k�N−1

{
k∑

i=1

(
Qt

m+i − Et
m+i

)}}
(3)

and the inequality
N∑

m=1

Qt
m <

N∑
m=1

Et
m. (4)

The index m in the Qt
m and Et

m is to be read modulo N. A marked property of this system is
that it preserves positivity and integrality of the variables Qt

m and Et
m. We are interested in

the case where all the variables are positive integers.
An initial state of the system is given by a 2N -tuple of positive integers,

(q1, e1, . . . , qN , eN), where Q0
m = qm,E0

m = em (m = 1, . . . , N). We shall picture such
a 2N -tuple as a lattice path from (0, 0) to (L,L − 2M), where

L =
N∑

m=1

em +
N∑

m=1

qm, M =
N∑

m=1

qm

(therefore L − 2M = ∑
em − ∑

qm); each qm represents a displacement of qm units to the
right and qm units down (i.e., a ‘downhill’ segment), and each em represents a displacement
of em units to the right and em units up (i.e., an ‘uphill’ segment). We extend this procedure
continuously outside the interval [0, L]. For example,

(q1, e1, q2, e2, q3, e3, q4, e4) = (1, 4, 3, 2, 4, 6, 4, 7)

2
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O
L

Figure 1. A lattice path which represents (q1, e1, q2, e2, q3, e3, q4, e4) = (1, 4, 3, 2, 4, 6, 4, 7),
where L = 31.

is graphed as in figure 1. For a given 2N -tuple and for each m = 1, . . . , N , we write

vm =
∑

1�i�m

qi +
∑

1�i�m−1

ei = (the x-coordinate of the ‘mth minimum’), (5)

lm = max

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

the x-coordinate of the position where the
height, relative to that at vm, becomes −1
for the first time when we go along the path
leftward starting from vm

⎞⎟⎟⎠ , vm − L

⎫⎪⎪⎬⎪⎪⎭ ,

rm = min

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

the x-coordinate of the position where the
height, relative to that at vm, becomes 0
for the first time when we go along the path
rightward starting from vm

⎞⎟⎟⎠ , vm + L

⎫⎪⎪⎬⎪⎪⎭ ,

and

WL
m =

(
the maximum height, relative to that at vm,
in the lattice path on the interval [lm, vm]

)
, (6)

WR
m =

(
the maximum height, relative to that at vm,
in the lattice path on the interval [vm, rm]

)
, (7)

and we define

Wm = min
{
WL

m,WR
m

}
. (8)

In our example above, L = 31 and v1 = 1, v2 = 8, v3 = 14, v4 = 24; l1 = −2, l2 = 1, l3 =
−3, l4 = 15; r1 = 13, r2 = 12, r3 = 45(= v3 + L), r4 = 55(= v4 + L); hence, WL

1 = 1,

WL
2 = 3,WL

3 = 5,WL
4 = 4; WR

1 = 4,WR
2 = 2,WR

3 = 12,WR
4 = 11; W1 = 1,W2 = 2,

W3 = 5,W4 = 4. The following is the main statement, the proof of which is given in the next
section.

Theorem 2.1. Let N be a positive integer. Let q1, e1, . . . , qN , eN be positive integers that
satisfy ∑

1�m�N

qm <
∑

1�m�N

em. (9)

We assume further that∑
i�m�N

qm <
∑

i�m�N

em (i = 2, 3, . . . , N); (10)

3
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cf the remark below. The unique solution Qt
m,Et

m (m = 1, 2, . . . , N), of the initial value
problem (1)–(3) with

Q0
m = qm, E0

m = em (m = 1, 2, . . . , N)

is given by

Qt
m = �t

m−1 − �t
m − �t−1

m−1 + �t−1
m , Et

m = �t−1
m − �t−1

m+1 − �t
m−1 + �t

m,

where

�t
m = max

(n1,...,nN )∈Z
N∑

ni=m

⎡⎣ N∑
i=1

ni(bi − tWi) −
N∑

i=1

N∑
j=1

ni�ijnj

⎤⎦ , (11)

bi = −ai − 2
∑

i+1�j�N

min{Wi,Wj } − Wi +
∑

1�j�N

min{Wi,Wj }, (12)

�ij =
⎛⎝L

2
−

∑
1�k�N

min{Wi,Wk}
⎞⎠ δij + min{Wi,Wj }, (13)

ai =
∑

1�j�i

qj +
∑

1�j�i−1

ej + 1 (= vi + 1) (14)

(i, j = 1, 2, . . . , N), the Wi’s are those for the 2N -tuple (q1, e1, . . . , qN , eN), and δij is
Kronecker’s delta.

Note that, in the equations above, changing the values of ai for all i simultaneously by
the same amount, ai → ai + α, causes changes in bi and �t

m as in

bi → bi − α, �t
m → �t

m − mα;
but the values of Qt

m and Et
m remain unchanged.

Remark 2.2. The assumption (10) is not an essential restriction. If a given set of positive
integers satisfies (9) but does not satisfy (10), we calculate

μ := max
2�i�N

∑
i�m�N

(qm − em)

(μ � 0 by assumption) and

i0 := min

⎧⎨⎩i

∣∣∣∣∣ 2 � i � N,
∑

i�m�N

(qm − em) = μ

⎫⎬⎭ .

If we then shift the indices cyclically such that q ′
N = qi0−1, e

′
N = ei0−1, q

′
N−1 = qi0−2, e

′
N−1 =

ei0−2, . . . , q
′
2 = qi0+1, e

′
2 = ei0+1, q

′
1 = qi0 , e

′
1 = ei0 , the new set of integers, q ′

1, e
′
1, . . . , q

′
N, e′

N

satisfies both (9) and (10).

The Wm, defined in (8), can be computed directly, without the use of any pictures.

Proposition 2.3. Let N be a positive integer, and let (q1, e1, . . . , qN , eN) be a 2N -tuple of
positive integers.

4
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(1) Write

V(k)L
m = min

1�j�k

⎧⎨⎩ ∑
1�i�j

(qm−i+1 − em−i )

⎫⎬⎭
for k = 1, . . . , N − 1, and

�(1)L
m = qm,

�(k)L
m =

⎧⎪⎨⎪⎩
∑

m−k+1�i�m−1

(qi − ei) + qm if V(k−1)L
m � 0,

−1 if V(k−1)L
m � −1

for k = 2, . . . , N . Then, WL
m (6) is given by

WL
m = max

{
�(k)L

m

∣∣1 � k � N
}
.

(2) Write

V(k)R
m = min

1�j�k

⎧⎨⎩ ∑
1�i�j

(em+i−1 − qm+i )

⎫⎬⎭
for k = 1, . . . , N − 1, and

�(1)R
m = em,

�(k)R
m =

⎧⎪⎨⎪⎩
em +

∑
m+1�i�m+k−1

(ei − qi) if V(k−1)R
m � 1,

−1 if V(k−1)R
m � 0

for k = 2, . . . , N . Then, WR
m (7) is given by

WR
m = max

{
�(k)R

m

∣∣1 � k � N
}
.

(Note that the value −1 assigned to �(k)L,R
m in some cases is artificial; one can assign any

number not greater than qm (resp. em) to the same effect.)

Proof. In the lattice path, for each m = 1, . . . , N , we call the minimum at vm (5) the mth
minimum, and the maximum at λm := vm + em the mth peak; and, for each s ∈ Z, we call the
minimum at vm + sL the (m + sN)th minimum, and the maximum at λm + sL the (m + sN)th
peak. Let h denote the ‘height function’ of the path (i.e., the coordinate of a point on the
path at x is (x, h(x)); see figure 2). Then, the first part of the claim is obvious if we note the
following: ∑

1�i�j

(qm−i+1 − em−i ) = h(vm−j ) − h(vm),

V(k)L
m = min

1�j�k
h(vm−j ) − h(vm)

=
(

height of the lowest minimum among the (m − 1)th to
(m − k)th minima, relative to that of the mth one

)
,

and ∑
m−k+1�i�m−1

(qi − ei) + qm = h(λm−k) − h(vm).

5
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0th  peak

1st peak

2nd peak

1st min.

2nd min.

3rd min.

q e q e q

y

x

1 1 2 2 3

O

Figure 2. Peaks and minima of a lattice path (q1, e1, q2, e2, . . .); the path is identified with the
graph of a function h (this is the definition of h).

The second part of the claim follows, since∑
1�i�j

(em+i−1 − qm+i ) = h(vm+j ) − h(vm),

V(k)R
m = min

1�j�k
h(vm+j ) − h(vm)

=
(

height of the lowest minimum among the (m + 1)th to
(m + k)th minima, relative to that of the mth one

)
,

and

em +
∑

m+1�i�m+k−1

(ei − qi) = h(λm+k−1) − h(vm).

�

3. Proof of the theorem

3.1. Outline

We assume familiarity with the PBBS and the (infinite) box–ball system, as described, for
example, in [4–6].

Let q1, e1, . . . , qN , eN be positive integers that satisfy
∑

qm <
∑

em. It is known that
the udp Toda equations (1)–(3) with the initial condition

Q0
m = qm, E0

m = em (m = 1, . . . , N)

describe the time evolution of the PBBS whose initial state is given by a finite sequence

1, . . . , 1︸ ︷︷ ︸
q1

, 0, . . . , 0︸ ︷︷ ︸
e1

, 1, . . . , 1︸ ︷︷ ︸
q2

, 0, . . . , 0︸ ︷︷ ︸
e2

, . . . , 1, . . . , 1︸ ︷︷ ︸
qN

, 0, . . . , 0︸ ︷︷ ︸
eN

(15)

where each ‘1’ stands for a filled box, each ‘0’ for empty one, and L = ∑
em +

∑
qm

corresponds to the system length (or the number of boxes). At time t, the size of each block
of consecutive 1’s is identified with Qt

m and that of each block of consecutive 0’s with Et
m

[4, 5]. Such a state of the PBBS can be considered as an infinite sequence of 0’s and 1’s, or a

6
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000110001111000111000
100001100000111000111

g  =
T  g  =L

Figure 3. The time evolution operator TL of the PBBS.

...000110001111000111000000...

...000001100000111000111100...
g  =

T g  =

Figure 4. The time evolution operator T of the BBS.

mapping of Z into {0, 1}, periodic of period L; the state (15) is then identified with a sequence
f that satisfies the following:

f is 1 on
N⋃

m=1

⎡⎣ ∑
1�k�m−1

(qk + ek) + 1,
∑

1�k�m−1

(qk + ek) + qm

⎤⎦ ,

f is 0 on
N⋃

m=1

⎡⎣ ∑
1�k�m−1

(qk + ek) + qm + 1,
∑

1�k�m−1

(qk + ek) + qm + em

⎤⎦
(where [a, b] denotes the set of integers n that satisfy a � n � b) and f (j + L) = f (j) for
j ∈ Z. The time evolution operator will be denoted by TL (see figure 3).

Now we introduce a positive integer S; we shall let it tend to +∞ later. Let fS be a
sequence defined by

fS(j) =
{

f (j) if − SL + 1 � j � (S + 1)L,

0 otherwise;
in other words, fS consists of 2S + 1 copies of f |[1,L] where the interval [1, L] is in the middle,
and zeros outside. We now think of fS as a state of the (ordinary, or infinite) box–ball system
(BBS), and consider its time evolution, T tfS = T (T (· · · T (fS) · · ·)), t = 0, 1, 2, . . . (For the
definition of T see figure 4; or section 3 in [6]). Then, one should observe that the blocks of
1’s and 0’s of T tfS on and near the interval [1, L] will behave in the same manner as those of
T t

Lf until the effect of the left boundary at the initial time t = 0 reaches there; hence, up to
this point in time, states of the PBBS, therefore the variables of the udp Toda, Qt

m and Et
m,

will be described by those of the BBS.
To be more precise, there are (2S +1)N blocks of consecutive 1’s in T tfS ; let ãi (t) denote

the position of the ith block (i = 1, 2, . . . , (2S + 1)N), counted from right to left:

ã(2S+1)N (t) < · · · < ã2(t) < ã1(t).

(If a block is on an interval [i0, i1] then its position is defined to be i1 + 1; we have
followed the notation in [6], section 6.) Let Q̄t

(2S+1)N−i+1 denote the size of the ith block
(i = 1, 2, . . . , (2S + 1)N); hence, Q̄t

i is the size of the ith block if counted from left to right.
Let Ēt

i be the size of the block of consecutive 0’s between the block of 1’s corresponding to
Q̄t

i and that corresponding to Q̄t
i+1. Then, the statement above is that Q̄t

SN+m and Ēt
SN+m for

m = 1, 2, . . . , N coincide with Qt
m and Et

m respectively, when 0 � t � CS, where C is some
constant that does not depend on S. Letting S tend to infinity we have

Qt
m = lim

S→∞
Q̄t

SN+m, Et
m = lim

S→∞
Ēt

SN+m (16)

7
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t

t - 1

Q- E-

a (  -  )1t~ a (  -  )1t~

a (  )t~

SN+m
t

SN+m
t

SN+N-m+1 SN+N-m

SN+N-m+1

Figure 5. Schematic illustration for (17).

for m = 1, 2, . . . , N and for all t � 0. It follows that
Q̄t

SN+m = ãSN+N−m+1(t) − ãSN+N−m+1(t − 1),

Ēt
SN+m = ãSN+N−m(t − 1) − ãSN+N−m+1(t)

(17)

(figure 5) and the right-hand sides of these equations can be written in terms of the initial data,
as was done in [6]. Combining (16) and (17) we are able to obtain the desired expression for
the solution to the IVP of the udp Toda equation.

3.2. Proof of theorem 2.1

Let �̃t
i denote the Psi function of [6] (equation (3) therein) corresponding to our BBS state

fS ; therefore �̃t
i depends on S. We have

ãi (t) = �̃t
i − �̃t

i−1, (18)

((7) and (21) in [6]) and an expression for �̃t
i in terms of the initial data (from (33) in [6]):

�̃t
m̃ = max

J⊂[(2S+1)N]
|J |=m̃

⎡⎢⎢⎣∑
i∈J

(θ̃i + tW̃i) −
∑
i,j∈J
i �=j

min{W̃i, W̃j }

⎤⎥⎥⎦
for m̃ = 1, 2, . . . , (2S + 1)N , where [k] denotes the set {1, 2, . . . , k}, |A| the number of
elements in A,

θ̃ i := ãi + 2
∑

1�j�i−1

min{W̃i, W̃j },

ãi := ãi (0) and where W̃i is a positive integer (which in [6] was called the amplitude of the
ith block of fS), defined by W̃i = W(2S+1)N−i+1. Here Wi is determined in a similar manner
as for Wi in the previous section, i.e., from a lattice path corresponding to

+∞, q1, e1, . . . , qN , eN︸ ︷︷ ︸, . . . , q1, e1, . . . , qN , eN︸ ︷︷ ︸︸ ︷︷ ︸
2S times

, q1, e1, . . . , qN , +∞,

which is represented by the graph of a function h defined by

h(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x (x < 0)

−x (0 � x < q1)

x − 2q1 (q1 � x < q1 + e1)

−x + 2e1 (q1 + e1 � x < q1 + e1 + q2)

. . . .

8
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Let vi be the x-coordinate of the ith minimum, and

li =
⎛⎝the x-coordinate of the position where the height,

relative to that at vi , becomes −1 for the first time,
when we go along the path leftward starting from vi

⎞⎠ ,

ri =

⎛⎜⎜⎝
the x-coordinate of the position where the height,
relative to that at vi , becomes 0 for the first time,
when we go along the path rightward starting from vi ;
or +∞ if there is no such position

⎞⎟⎟⎠ .

Let WL
i denote the maximum height, relative to that at vi , in the lattice path on the interval

(li , vi], and let WR
i denote the maximum height, relative to that at vi , in the lattice path on the

interval [vi , ri ); or WR
i = +∞ if ri = +∞. Then Wi := min

{
WL

i , WR
i

}
. W1 corresponds to

the leftmost minimum, and W(2S+1)N to the rightmost one. (cf Appendix A.2 where another
method for computing Wi is presented.) It follows that ãi+N − ãi = −L, and, thanks to the
assumption (10), that W̃i = W̃i+N for i = 1, . . . , 2SN . Therefore, we have

Z̃i := θ̃i+N − θ̃i = −L + 2
∑

i�j�i−N+1

min{W̃i, W̃j }

= −L + 2
∑

1�j�N

min{W̃i, W̃j },

and Z̃i+N = Z̃i . By virtue of inequalities∑
i�j�i−N+1

min{W̃i, W̃j } �
∑

i�j�i−N+1

W̃j = M

(
=

∑
m

qm

)

and the assumption M < L/2, we have θ̃i > θ̃i+N .
Decompose [(2S+1)N ] as [(2S+1)N ] = ⋃

Tk , where Tk := {k,N +k, 2N +k, . . . , 2SN +
k}, k = 1, . . . , N . Let Tn1,...,nN

= {J ⊂ [(2S + 1)N ]||J ∩ Tk| = nk(k = 1, . . . , N)} for each
(nj ) = (n1, . . . , nN) ∈ [0, 2S + 1]N . Then

�̃t
m̃ = max

J⊂[(2S+1)N]
|J |=m̃

[. . .] = max
(nj )∈[0,2S+1]N∑

ni=m̃

[
max

J∈Tn1 ,...,nN

[. . .]
]
.

Since θ̃i > θ̃i+N and W̃i = W̃i+N , the inner bracket [. . .] on the right-hand side attains its
maximum at

J = Jn1,...,nN
:=

⋃
1�k�N

{jN + k|0 � j � nk − 1};

hence,

�̃t
m̃ = max

(nj )∈[0,2S+1]N∑
nj =m̃

⎡⎢⎢⎣ ∑
i∈Jn1 ,...,nN

(θ̃i + tW̃i) −
∑

i,j∈Jn1 ,...,nN

i �=j

min{W̃i, W̃j }

⎤⎥⎥⎦

= max
(nj )∈[0,2S+1]N∑

nj =m̃

⎡⎣ N∑
i=1

ni

(
θ̃i +

Z̃i

2
+ W̃i + tW̃i

)
−

N∑
i=1

n2
i

Z̃i

2
−

N∑
i=1

N∑
j=1

ninj min{W̃i, W̃j }
⎤⎦,

9
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where in the last line we have used∑
i∈Jn1 ,...,nN

θ̃i =
N∑

k=1

nk−1∑
j=0

θ̃jN+k =
N∑

k=1

(
nkθ̃k − nk(nk − 1)

2
Z̃i

)
and ∑

i,j∈Jn1 ,...,nN

i �=j

min{W̃i, W̃j } =
N∑

i=1

N∑
j=1

ninj min{W̃i, W̃j } −
N∑

i=1

niW̃i .

Substituting SN + N − m for m̃ and S + 1 − nN+1−j for nj and writing

ai := ãN+1−i , Wi := W̃N+1−i

yields

�̃t
SN+N−m = �t

m,S + CS + (S + 1)M · t +

(
S +

1

2

)
L · m, (19)

where

�t
m,S := max

(ni )∈[−S,S+1]N∑
ni=m

⎡⎣ N∑
i=1

ni(bi − tWi) −
N∑

i=1

N∑
j=1

ni�ijnj

⎤⎦ ,

with bi and �ij as defined in (12) and (13). CS is a constant which does not depend on t nor
on m. Combining (16), (17), (18) and (19), we obtain

Qt
m = lim

S→∞
(
�t

m−1,S − �t
m,S − �t−1

m−1,S + �t−1
m,S

)
,

Et
m = lim

S→∞
(
�t−1

m,S − �t−1
m+1,S − �t

m−1,S + �t
m,S

)
.

The limit limS→∞ �t
m,S exists because the matrix (�ij ) is positive definite ([6] section 6).

Thus we have arrived at the expression in the theorem.

4. Concluding remark

We remark briefly on the relation between the positive definite matrix � = (�i,j ) and
the ultradiscrete period matrix B which appears in the method of ultradiscretization of the
discrete periodic Toda equation [5]. Although both determine the fundamental cycles of the
same PBBS, they are substantially different from each other, as is immediately clear from
equations (20) and (21).

Let σ be a permutation such that Wσ(1) � Wσ(2) � · · · � Wσ(N). Write Vi = Wσ(i). The
N × N matrix � = (

�i,j

)
has eigenvalues λi (i = 1, 2, . . . , N) where

λ1 = L

2
, λi = L

2
−

∑
1�k<i−1

Vk − (N − i + 2)Vi−1 (i = 2, 3, . . . , N),

for the two matrices � and (�σ(i),σ (j)) have common eigenvalues. As the latter has a simple
form,

�σ(i),σ (j) =
{

Vmin{i,j} (i �= j)

L
2 − ∑

1�k<i Vk − (N − i)Vi (i = j),

10
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the eigenvalues are obtained immediately as above. The corresponding eigenvectors (though
we do not need them) of (�σ(i),σ (j)) are

v1 =

⎛⎜⎜⎜⎜⎜⎝
1
1
1
...

1

⎞⎟⎟⎟⎟⎟⎠ , v2 =

⎛⎜⎜⎜⎜⎜⎝
−N + 1

1
1
...

1

⎞⎟⎟⎟⎟⎟⎠ , v3 =

⎛⎜⎜⎜⎜⎜⎝
0

−N + 2
1
...

1

⎞⎟⎟⎟⎟⎟⎠ , . . . , vN =

⎛⎜⎜⎜⎜⎜⎝
0
0
...

−1
1

⎞⎟⎟⎟⎟⎟⎠ .

The ultradiscrete period matrix B has the following form ([5], (4.41)):

QBQT = (−π
√−1ε)−1 · diag

(
2

1
λN,

3

2
λN−1, . . . ,

N + 1

N
λ1

)
, (20)

where

Q =

⎛⎜⎜⎜⎜⎜⎝
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
0 0 . . . −1/N 1

⎞⎟⎟⎟⎟⎟⎠ × · · · ×

⎛⎜⎜⎜⎜⎜⎝
1 0 0 . . . 0
0 1 0 . . . 0
0 −1/3 1 . . . 0
...

...
...

. . .
...

0 −1/3 0 . . . 1

⎞⎟⎟⎟⎟⎟⎠

×

⎛⎜⎜⎜⎜⎜⎝
1 0 0 . . . 0

−1/2 1 0 . . . 0
−1/2 0 1 . . . 0

...
...

...
. . .

...

−1/2 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎠ .

Hence, we obtain the relation

det((−π
√−1ε)B) = (N + 1) det �. (21)
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Appendix. Another method for computing Wi and Wi

In this appendix, another method for computing Wi (for an initial state of the udp Toda, or the
PBBS) and Wi (for that of the ultradiscrete Toda molecule, or the BBS) is presented. This
method was in fact adopted as the definition of Wi in our previous paper [6].

A.1. Wi: the periodic case

Let (q1, e1, . . . , qN , eN) be a 2N -tuple of positive integers. Let f be a finite sequence which
consists of q11’s followed by e10’s, followed by q21’s, and so on. In what follows we always
take the periodic boundary condition into account when thinking about sequences of length
L = ∑

qi +
∑

ei , so that, for example, in f = (f (1), f (2), . . . , f (L)) the position L is
supposed to be adjacent to position 1.

11
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1. Obtain f̃ (k)’s from the following algorithm:

Input: f , a sequence of 1’s and 0’s of length L with f −1(1) < f −1(0).
Output: a finite sequence f̃ (0), f̃ (1), . . . of sequences of 1’s, 0’s and ‘ ”s (SPACEs) of
length L.
Begin

Set f̃ (0) = f and k = 0.

While f̃ (k) still contains 1’s do

• Set g = f̃ (k).
• In each consecutive sequence of 1’s in g where SPACEs between 1’s are to be

skipped if they exist, change the leftmost 1 to a SPACE. In each consecutive
sequence of 0’s in g where SPACEs between 0’s are to be skipped if they
exist, change the rightmost 0 to a SPACE. Update g.

• Set f̃ (k+1) = g. Increment the value of k by 1.

End

If the while loop is repeated K times, then we have f̃ (0), f̃ (1), . . . , f̃ (K−1).
2. Let a1, a2, . . . , aN denote the elements of the set {n|f (n − 1) = 1, f (n) = 0, n =

1, 2, . . . , L} where a1 < a2 < · · · < aN . For each k (k = 0, 1, . . . , K − 1) and i
(i = 1, 2, . . . , N), insert ‘|’ (called the i th ‘|’) into the position between the digits (and/or
SPACE(s)) of f̃ (k) at ai − 1 and ai .

3. For each i (i = 1, 2, . . . , N), let Li be the smallest number k such that the three digits of
f̃ (k) to the left of the ith ‘|’ (skipping SPACEs if there are) are 001; if there is no such
number k we set Li = 0.

4. For each i (i = 1, 2, . . . , N), let Ri be the smallest number k such that the two digits of
f̃ (k) to the right of the ith ‘|’ (skipping SPACEs if there are) are 01; if there is no such
number k we set Ri = ∞.

5. Then, Wi = min{Li + 1, Ri + 1} (i = 1, 2, . . . , N).

For example, if N = 4 and an 8-tuple (1, 4, 3, 2, 4, 6, 4, 7) is given, then

f = 1000011100111100000011110000000

and we have a table:

1st 2nd 3rd 4th

f̃ (0) = 1|0000111|001111|0000001111|0000000
f̃ (1) = |000 11|0 111|00000 111|000000
f̃ (2) = |00 1| 11|0000 11|000000
f̃ (3) = |0 | 11|000 1|000000
f̃ (4) = | | 1|00 |000000
f̃ (5) = | | |00 |00000.

Hence, L1 = 0, R1 = 3, L2 = 2, R2 = 1, L3 = 4, R3 = ∞, L4 = 3 and R4 = ∞, and hence
W1 = 1,W2 = 2,W3 = 5 and W4 = 4. The Wi’s coincide with those obtained by (8) in
section 2.

12
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A.2. Wi: the nonperiodic case

Let (q1, e1, . . . , qN−1, eN−1, qN) be a (2N − 1)-tuple of positive integers. Let f be an infinite
sequence which consists of an infinite number of 0’s, followed by q11’s, followed by e10’s,
followed by q21’s, . . . , followed by qN1’s, followed by an infinite number of 0’s, where the
leftmost one is assumed to be at position 1 (i.e., if f is considered as a mapping of Z into
{0, 1}, then f (1) = 1 and f (i) = 0 for i � 0).

1. Obtain f̃ (k)’s from the following algorithm:

Input: f , an infinite sequence of 1’s and 0’s with f −1(1) < ∞.
Output: a finite sequence f̃ (0), f̃ (1), . . . of infinite sequences of 1’s, 0’s and ‘ ”s (SPACEs).
Begin

Set f̃ (0) = f and k = 0.

While f̃ (k) still contains 1’s do

• Set g = f̃ (k).
• In each consecutive sequence of 1’s in g where SPACEs between 1’s are

to be skipped if they exist, change the leftmost 1 to a SPACE. In each
consecutive sequence of 0’s of finite size in g where SPACEs between 0’s
are to be skipped if they exist, change the rightmost 0 to a SPACE. Update
g.

• Set f̃ (k+1) = g. Increment the value of k by 1.

End

If the while loop is repeated K times, then we have f̃ (0), f̃ (1), . . . , f̃ (K−1).
2. Let a1, a2, . . . , aN denote the elements of the set {n|f (n − 1) = 1, f (n) = 0, n ∈ Z}

where a1 < a2 < · · · < aN . For each k (k = 0, 1, . . . , K − 1) and i (i = 1, 2, . . . , N),
insert ‘|’ (called the ith ‘|’) into the position between the digits (and/or SPACE(s)) of f̃ (k)

at ai − 1 and ai .
3. For each i (i = 1, 2, . . . , N), let Li be the smallest number k such that the three digits of

f̃ (k) to the left of the ith ‘|’ (skipping SPACEs if there are) are 001; if there is no such
number k we set Li = 0.

4. For each i (i = 1, 2, . . . , N), let Ri be the smallest number k such that the two digits of
f̃ (k) to the right of the ith ‘|’ (skipping SPACEs if there are) are 01; if there is no such
number k we set Ri = ∞.

5. Then, Wi = min{Li + 1, Ri + 1} (i = 1, 2, . . . , N).

These Wi’s coincide with those in section 3.2 (with N being replaced by (2S + 1)N ). This Wi

was written as WN−i+1 in the previous paper [6].
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